Компрессоры, применяющиеся в холодильной технике

В статье представлен краткий обзор компрессоров, применяющихся в холодильной технике, и описан их принцип действия.


Компрессор – основной элемент парокомпрессионной холодильной машины. Компрессор это устройство, предназначенное для сжатия и перемещения холодильного агента.


На базе компрессоров собирают компрессорные, компрессорно-испарительные, компрессорно-конденсаторные агрегаты, а также комплектных холодильные машины.


Компрессорный агрегат - агрегат, в состав которого входят компрессор и другое, как правило, унифицированное для различных холодильных систем дополнительное энергетическое и штатное оборудование, но без конденсатора и ресивера.


Компрессорно-конденсаторный агрегат - агрегат, в состав которого входят один или несколько компрессоров и другое, как правило, унифицированное для различных холодильных систем штатное оборудование, в том числе один или несколько конденсаторов и, возможно, ресивера.


Моноблочная холодильная система - автономная холодильная система, собранная и прошедшая испытания на месте изготовления и не требующая при монтаже соединения частей, содержащих хладагент. Моноблочная система может включать в себя переходники и отсечные вентили, смонтированные на заводе.


По принципу действия компрессора, наиболее широко применяющиеся в холодильной технике, бывают двух типов: объемные и динамические. В компрессорах объемного принципа действия сжатие газообразного хладагента происходит за счет уменьшения начального объема. В компрессорах динамического принципа действия хладагент непрерывно перемещается с большой скоростью через проточную часть компрессора, при этом кинетическая энергия потока преобразуется в потенциальную, а плотность хладагента повышается.


К компрессорам объемного принципа действия относятся поршневые, винтовые, ротационные, спиральные и линейные компрессоры.


К компрессорам динамического принципа действия относятся центробежные компрессоры.


По конструктивному исполнению компрессоры делятся на герметичные (рис. 1), полугерметичные (рис. 2) и открытые (сальниковые) рис. 3.


Рис. 1 Герметичные компрессоры.jpg


Герметичные компрессоры представляют собой агрегат, где механическая часть компрессора и электродвигатель находятся в герметичном кожухе, как правило, такие компрессоры обладают невысокой производительностью и являются практически неремонтопригодными, поскольку для разборки компрессора необходимо разрезать, а затем снова сварить герметичный корпус.


Рис. 2 Полугерметичные компрессоры.jpg


У полугерметичных компрессоров механическая часть и электродвигатель также находятся в одном корпусе, но в отличие от герметичных, компрессор можно разобрать и собрать, не повреждая корпус. Компрессоры данного типа применяются для средних производительностей.


Рис. 3 Открытые (сальниковые) компрессоры.jpg


В открытых (сальниковых) компрессорах механическая часть находится в одном корпусе, а электродвигатель находится за пределами корпуса компрессора. Привод таких компрессоров осуществляется через муфту. Как правило, такие компрессоры применяются для средних и больших производительностей, но для некоторых специальных применений (транспортное холодильное оборудование, аммиачные системы и т. д.) возможно применение компрессоров и меньшей производительности.


Принцип действия поршневого компрессора


Принцип работы поршневого компрессора (рис. 4) и описывается соотношением P1V1=P2V2 (при постоянной температуре).


Индекс 1 относится к состоянию газообразного хладагента на входе в компрессор, индекс 2 - к состоянию сжатого хладагента.


1. Когда поршень опускается, в цилиндре образуется свободное пространство, и в результате перепада давления открывается всасывающий клапан, через который газообразный хладагент всасывается в камеру сжатия.


2. Затем, когда поршень проходит точку, соответствующую наибольшему объему камеры сжатия, всасывающий клапан закрывается, и давление хладагента начинает возрастать.


3. По мере уменьшения объема камеры сжатия давление хладагента увеличивается.


4. Когда давление в камере достигает заданных параметров, открывается нагнетательный клапан, и сжатый хладагент покидает камеру сжатия.


Рис. 4.jpg



Принцип действия винтового компрессора.(рис. 5)


Рис. 5.jpg


Первая стадия. Воздух проходит через впускное отверстие и попадает в открытые полости роторов на стороне всасывания. После чего всасывающее окно закрывается и начинается процесс сжатия


Вторая и Третья Стадия Сжатия. Поскольку роторы вращаются в противоположных направлениях, открытые полости закрываются и объем полостей постепенно уменьшается из-за чего происходит повышение давления. Одновременно с этим процессом происходит впрыск масла. Это необходимо для уплотнения зазоров между роторами и стенками корпуса, для отвода тепла и смазки подшипников.


Четвертая Стадия. Нагнетание. Когда процесс сжатия закончен и достигнуто необходимое давление - сжатый воздух выталкивается в специально спрофилированное нагнетательное окно





Принцип действия ротационного компрессора


Компрессор со стационарными пластинами


Рис. 6.jpg


а. Хладагент заполняет имеющееся пространство


б. Начинается сжатие хладагета внутри компрессора и всасывание новой порции хладагента


в. Сжатие и всасывание продолжается


г. Сжатие завершено



Компрессор с вращающимися пластинами


Рис 7.jpg


В компрессоре с вращающимися пластинами (рис. 7) хладагент сжимается при помощи пластин, закрепленных на вращающемся роторе. Ось ротора смещена относительно оси цилиндра компрессора. Края пластин плотно прилегают к поверхности цилиндра, разделяя области высокого и низкого давления.


а. Парообразный хладагент заполняет имеющееся пространство


б. Начинается сжатие хладагента внутри компрессора и всасывание новой порции хладагента


в. Сжатие и всасывание завершается.


г. Начинается новый цикл всасывания и сжатия.



Принцип действия спирального компрессора (рис. 8)


Рис. 8.jpg


Компрессор состоит из двух спиралей, вставленных одна в другую. Внутренняя спираль неподвижно закреплена, а внешняя вращается вокруг нее.


Спирали имеют особый профиль (эвольвента), позволяющий перекатываться без проскальзывания. Подвижная спираль компрессора установлена на эксцентрике и перекатывается по внутренней поверхности другой спирали. При этом точка касания спиралей постепенно перемещается от края к центру. Хладагент, находящийся перед линией касания, сжимается, и выталкивается в центральное отверстие в крышке компрессора. Точки касания расположены на каждом витке внутренней спирали, поэтому хладагент сжимается более плавно, меньшими порциями, чем в других типах компрессоров. В результате нагрузка на электродвигатель компрессора снижается, особенно в момент пуска компрессора.


Через входное отверстие в цилиндрической части корпуса, поступающий воздух охлаждает двигатель, затем сжимается между спиралей и выходит через выпускное отверстие в верхней части корпуса компрессора.


Принцип действия линейного компрессора


Рис. 9.jpg


Принцип действия линейных компрессоров (рис. 9) основан на возвратно-поступательном движении поршня, однако это движение осуществляется за счет электромагнитного поля, создаваемого обмоткой электродвигателя. Такая конструкция позволяет снизить энергопотребление компрессора на значительную величину (до 45 %) и минимизировать уровень шума.



Принцип действия центробежного компрессора


Рис. 10.jpg


Динамический компрессор — машина с непрерывным потоком, в которой при протекании газа происходит рост давления газа (рис. 10). Вращающиеся лопатки рабочего колеса компрессора приводят к ускорению газа до высокой скорости, после чего скорость газа при расширении преобразуется в давление и соответственно уменьшается. В зависимости от основного направления потока компрессоры могут быть радиальными или осевыми.


В отличие от объемных компрессоров в динамических компрессорах даже небольшое изменение рабочего давления приводит к большому изменению производительности.


Каждая скорость характеризуется верхним и нижним пределами производительности. При верхнем пределе скорость потока газа достигает скорости звука. При достижении нижнего предела противодавление превышает создаваемое компрессором давление, что означает обратный поток газа в компрессоре. Это в свою очередь вызывает пульсацию, шум и риск механической поломки компрессора



Таким образом, в холодильной технике применяется большое количество компрессоров, отличающихся как по принципу действия, так и по конструктивному исполнению. Мы расскажем об особенностях конструкции различных компрессоров в следующих статьях.


Комментарии 0

Комментариев пока нет

Приобрести компрессор на зил 130 можно здесь.